2017-06-16, 01:11
"...as you can tell I'm of the view there is not a lot you can do about lightning, at least not without spending a small fortune on protection. Switching transients on your incoming electrical power is another matter but they don't have anything like the energy of a lightning strike."
Lightning protection is all about layout, not just fitting protective devices. I have worked on dozens of sites from MF to EHF that are constantly bombarded by lightning with few ill effects. Here, we are dealing with LF/VLF, and the only issue is that lightning 'frequencies' are in that realm. Any solution that blocks lightning will affect our receivers. Interestingly, the energies in lightning that cause the most damage (like blowing-out switchboards and the like) are 'long-tail events', which exist at much lower frequencies again 1kHz - 10kHz. If we can safely conduct these away from our systems, the remainder of energy at higher frequencies is not going to hurt (much).
My solution, being on the coast in an area that cops a lot of lightning in the warmer months, is to keep it inside the roof. If I mount it outside and an adjacent tree is struck, I would expect a side-strike to affect the system.
BTW, I am a ham radio operator and have a number of wire antennas covering HF, well grounded and protected with GDTs. Although we have experienced a number of strikes (recently repairing the roof gutter after the last tree strike sent timber everywhere), the only 'damage' we ever had was a cable modem that may have simply failed due to being 8 years old! It was replaced by the telco.
Lightning protection is all about layout, not just fitting protective devices. I have worked on dozens of sites from MF to EHF that are constantly bombarded by lightning with few ill effects. Here, we are dealing with LF/VLF, and the only issue is that lightning 'frequencies' are in that realm. Any solution that blocks lightning will affect our receivers. Interestingly, the energies in lightning that cause the most damage (like blowing-out switchboards and the like) are 'long-tail events', which exist at much lower frequencies again 1kHz - 10kHz. If we can safely conduct these away from our systems, the remainder of energy at higher frequencies is not going to hurt (much).
My solution, being on the coast in an area that cops a lot of lightning in the warmer months, is to keep it inside the roof. If I mount it outside and an adjacent tree is struck, I would expect a side-strike to affect the system.
BTW, I am a ham radio operator and have a number of wire antennas covering HF, well grounded and protected with GDTs. Although we have experienced a number of strikes (recently repairing the roof gutter after the last tree strike sent timber everywhere), the only 'damage' we ever had was a cable modem that may have simply failed due to being 8 years old! It was replaced by the telco.